

B. Other reason:

ACCESS MANAGEMENT EXCEPTION REQUEST: AM-E

ACCESS MANAGEMENT REGULATIONS 24 VAC 30-73 SECTION 120

Submitted by:			Date:
Email Address:			Phone:
Address:		.	
Project Name:	Rte #	Loca	ality:
Description of Project:		·	
VDOT District:	Area Land Use Engine	eer:	
O.T.C.			
OTES: .). Submit this form and any attachments to one of the District's	s Area Land Use Engineers	.	
). See Section 120 of the Regulations for details on the requirement	ents, exceptions, and exce		view process.
). Attach additional information as necessary to justify the exce		.	
 If a traffic engineering study is required, the decision on the r Use the LD-440 Design Exception or the LD-448 Design Waiv 			
distance. See IIM-LD-227 on VDOT web site for additional			,,, д, д,
Solost the Sys	ontion(s) Boing Bosse	nata d	
_	eption(s) Being Reque		
Exception to the shared commercial entra	nce requirement. (Ad	ccess M. Regula	tions Section 120 C.2)
Reason for exception: A. An agreement to share the entrance	a could not be reached	l with adiainin	og proporty owner
Attached: Written evidence the			
B. Physical constraints: topography,	adjacent hazardous la	and use, strea	ım, wetland, other.
Specify constraint:			
Attached: Documentation of c	constraint such as aerial	photo or topo	ographic map.
Exception to the vehicular connection to adj	joining undeveloped p	property requ	irement. (Section 120 C.4)
Reason for exception:			
A. Physical constraints: topography,	adjacent hazardous la	and use, strea	am, wetland, other.
Specify constraint:			

Attached: Documentation of constraint such as aerial photo or topographic map.

Exception to the commercial entrance shall not be located within the functional area of an intersection
requirement. (See Regulation Section 120 C. 1; Appendix F, Rd Design Manual)
Attached: A traffic engineering study documenting that the operation of the intersection and public safety will not be adversely impacted.
EXCEPTION TO THE SPACING STANDARDS FOR:
Commercial entrances; intersections/median crossovers (Table 2-2);
 Commercial entrances/intersections near interchange ramps (Tables 2-3, 2-4); or
Corner clearance (Figure 4-4). Appendix F, Road Design Manual
Information on the Exception Request
ON A STATE HIGHWAY
Functional classification: Principal Arterial: Minor Arterial: Collector: Local:
Posted speed limit:mph
☐ NEAR AN INTERCHANGE RAMP (Submittal of a traffic engineering study required)
CORNER CLEARANCE (Submittal of a traffic engineering study required)
Type of intersection/entrance: Signalized Unsignalized Full Access Partial Access
Required spacing distanceft
Proposed spacing distanceft 280 ft to east / 120 feet to west along U.S. 60
Requested exception: Reduction in required spacingft 25 ft to east / 185 feet to west along U.S. 60
REASON FOR EXCEPTION:
A. To be located on an older, established business corridor along a highway where existing spacing did not meet the standards prior to 7/1/08 or 10/14/09. (Regulation Section 120 C.3.c)
Attached: Dated aerial photo of corridor identifying proposed entrance/intersection location.
B. Not enough property frontage to meet spacing standard, but the applicant does not want a partial access right-in/right-out entrance. (Section 120 C.3.f)
Attached: A traffic engineering study documenting that left turn movements at the entrance will not have negative impact on highway operation or safety.
C. To be located within a new urbanism mixed use type development. (Section 120 C.3.d)
Attached: The design of the development and compliance with intersection sight distance.
D. The proposed entrance meets the signal warrants but does not meet the signalized intersection spacing standard. The applicant requests an exception to the spacing standard.
Attached: A traffic engineering study that (i) evaluates the location's suitability for a roundabout and (ii)

provides documentation that the proposed signal will not impact safety and traffic flow. (Section 120 C.5)

E. The development's 2 nd (or additional) entrance does necessary for the streets to be accepted into the second	
Attached: Information on the development that identif	fies the location of entrances.
F. To be located within the limits of a VDOT and locality app	roved access management corridor plan.
Attached: Aerial photo of corridor identifying proposed er	
Attached. Actial prioto of corridor identifying proposed er	ittance/intersection location, (sect 120 c.s.s)
FOR VDOT USE ONLY	
Recommendation on Exception Request: Approve Deny	Date:
Area Land Use Engineer or: Name	•
Remarks:	
Exception Request Action: Approved Denied Denied	Date:
District Administrator or Designee:	
Name (and position if Designee)	
Remarks:	
	,

District Staff: Please email copy to Bradley.Shelton@VDOT.Virginia.gov

RAMEY KEMP & ASSOCIATES, INC.

4343 Cox Road Glen Allen, VA 23060

Phone: 804-217-8560 Fax: 804-217-8563

www.rameykemp.com

October 8, 2018

Ms. Susan Kassel
Director of Planning and Development Services
York County
224 Ballard Street
Yorktown, Virginia 23690
Phone: (757) 890-3531

Reference: Lightfoot Road C-Store

Traffic Impact Analysis (TIA) and Access Management Exception (AME) Request

York County and James City County, Virginia

Dear Ms. Kassel,

There is currently an Exxon station with 10 fueling positions in the northwest quadrant of the U.S. 60 (Richmond Road) at Lightfoot Road intersection. The Exxon station has two right-in / right-out driveways on U.S. 60, and one full-movement driveway on Lightfoot Road. The applicant is planning to redevelop the site, and construct a new convenience store with 12 fueling positions, and Ramey Kemp & Associates, Inc. (RKA) has performed this TIA to support the proposed redevelopment.

Based on meetings and coordination with the Virginia Department of Transportation (VDOT), the proposed access plan includes closing the eastern right-in / right-out driveway on U.S. 60, and shifting the site driveway on Lightfoot Road approximately 180 feet to the north, converting it to a partial access driveway with a right-in / right-out / left-out configuration, and constructing a southbound right-turn taper on Lightfoot Road. If approved, the proposed C-store is expected to be built in 2020. Figure 1 shows the site location and study intersections, and Figure 2 shows the conceptual site plan.

Based on the TIA scoping meeting with you and VDOT on February 6, the purpose of this letter report is to provide the following:

- Trip generation calculations
- Capacity analysis of the study intersections
- Evaluation of turn lane warrants at the site driveways
- AME Request for the existing right-in / right-out driveway on U.S. 60 that will remain

Existing Roadway Conditions

U.S. 60 (Richmond Road) is a Principal Arterial with an average daily traffic (ADT) volume of approximately 20,000 vehicles per day (vpd), and a posted speed limit of 45 miles per hour (mph) in the vicinity of the site.

Ms. Susan Kassel Page **2** of **9**

Lightfoot Road is a Major Collector with an ADT volume of approximately 8,800 vpd, and a posted speed limit of 45 mph in the vicinity of the site.

Figure 3 shows the existing lane configuration.

Existing Traffic Volumes

The AM peak hour (7:00 to 9:00 AM) and PM peak hour (4:00 to 6:00 PM) turning movement counts were conducted by VHB Engineering at the following intersection in October 2016:

U.S. 60 at Lightfoot Road / Williamsburg Outlet Mall Driveway

Based on discussion with VDOT, these traffic volumes were grown by 1.0% per year for two years to estimate the existing 2018 traffic volumes.

The AM peak hour (7:00 to 9:00 AM) and PM peak hour (4:00 to 6:00 PM) turning movement counts were conducted by Peggy Malone & Associates at the following intersections on June 12, 2018:

- U.S. 60 at West Right-in / Right-out Driveway
- U.S. 60 at East Right-in / Right-out Driveway
- Lightfoot Road at Full-Movement Driveway

The traffic count data are enclosed, and the existing 2018 volumes are shown in Figure 4.

Approved Development

Lightfoot Apartments is a potential mixed-use development located in the southeast quadrant of the Lightfoot Road at Old Mooretown Road intersection. The site plan includes 216 apartments, 32 townhomes, up to 13,000 square feet (s.f.) of general office and retail space, and up to 7,000 s.f. of restaurant space. The Lightfoot Apartment site trips shown in Figure 5 are based on the September 2017 Lightfoot Apartments TIA prepared by VHB.

Lightfoot Marketplace is a commercial center on the south side of U.S. 60 across from the site. The original TIA was performed by Bryant B. Goodloe, P.C. in October 2013, which included a number of outparcels along U.S. 60, which are now approved for construction:

- 26,625 s.f. of medical / dental office space
- 33,943 s.f. of general retail space
- 5,000 s.f. expansion of the existing Harris Teeter store
- Panera restaurant with 100 seats
- Fuel center with 10 fueling positions

Bryant B. Goodloe, P.C. submitted an updated trip generation memo for these uses in September 2017. The trip generation potential and distribution of those trips are included in this analysis based on that memo.

The trip generation potential of the Lightfoot Marketplace outparcels during a typical weekday, AM peak hour, and PM peak hour was estimated using the methodologies published by the Institute of Transportation Engineers (ITE) *Trip Generation Manual* – 10^{th} *Edition*. Table 1 summarizes the trip generation calculations for the Lightfoot Marketplace outparcels.

Table 1
Lightfoot Marketplace Outparcels – ITE Trip Generation – Weekday – 10th Edition

Land Use (ITE Land Use Code)	Size	Averag Tra (vp	e Daily ffic	AM Pea (vp	k Hour	PM Peak Hour (vph)		
		Enter	Exit	Enter	Exit	Enter	Exit	
Medical-Dental Office (720)	26,625 s.f.	468	468	58	16	26	66	
General Retail Space (820)	33,943 s.f.	1,442	1,442	20	12	117	127	
Supermarket (850)	5,000 s.f. expansion	784	784	11	8	42	41	
Fast-Food Restaurant with Drive-Thru Window (934)	100 seats	976	976	69	62	51	46	
Gasoline / Service Station (944)	10 f.p.	860	860	51	52	70	70	
Driveway Volum	es	4,530	4,530	209	150	306	350	
Pass-By Trips: General Retail – 3 Supermarket – 36 Fast-Food Restaurant – 49% A Gas Station – 58% AM	4% 5% AM / 50% PM	-490 -282 -483 -430	-490 -282 -483 -430	-5 -3 -32 -29	-5 -3 -32 -29	-41 -14 -24 -29	-41 -14 -24 -29	
Net New External	Ггірѕ	2,845	2,845	137	81	198	242	

The Lightfoot Marketplace trip distributions and assignments are shown in Figure 6. The total approved development trips are shown in Figure 7.

Background Traffic Growth

Based on discussion with you and VDOT, the 2018 peak hour traffic volumes were grown by an annual rate of 1.0% for two years to estimate the 2020 peak hour traffic volumes. The no-build 2020 peak hour trips were estimated by growing the existing volumes for two years and combining the approved development trips (Figure 7). Figure 8 shows the estimated 2020 no-build peak hour traffic volumes.

Trip Generation

The trip generation potential of the proposed C-store during a typical weekday, AM peak hour, and PM peak hour was estimated using the methodologies published by the ITE *Trip Generation Manual* – 10^{th} *Edition*. Table 2 summarizes the trip generation calculations.

Table 2
Lightfoot Road C-Store – ITE Trip Generation – Weekday – 10th Edition

Land Use (ITE Land Use Code)	Size	Daily 7	kday Fraffic od)	AM Pea (vp		PM Peak Hour (vph)			
		Enter	Exit	Enter	Exit	Enter	Exit		
Super Convenience Market / Gas Station (960)	12 f.p.	1,383	1,383	169	169	138	138		
Pass-By Trips – 63% AM / 0	66% PM	-892	-892	-106	-106	-91	-91		
Net New External Tr	ips	491	491	63	63	47	47		

C-stores attract pass-by trips, which are made by drivers who are already driving by the site today and will visit the C-store in the future because it is convenient. Table 2 shows the ITE pass-by trip adjustments that were applied in the study.

Site Traffic Distribution

The following primary traffic distribution was applied based on a review of the existing traffic volumes, the adjacent roadway network, and engineering judgement:

- 40% to / from the east on U.S. 60
- 30% to / from the west on U.S. 60
- 25% to / from the north on Lightfoot Road
- 5% to / from the south on the Williamsburg Outlet Mall Driveway

It was assumed that all of the pass-by trips will originate from U.S. 60, and the following pass-by trip directional distributions were used:

75% westbound / 25% eastbound

Figure 10 shows the primary and pass-by site trip distributions, Figure 11 shows the primary and pass-by site trip assignments, and Figure 12 shows the total site trips.

Existing Exxon Trip Adjustment

Under build conditions, the existing Exxon trips were removed from the roadway network as shown in Figure 9. The build 2020 peak hour volumes, which are shown in Figure 12, were estimated by combining the no-build volumes (Figure 8) with the existing trip adjustment (Figure 9) and the total site trips (Figure 12).

VDOT Intersection Spacing Standards

VDOT requires at least 250 feet of separation between partial access driveways and full-movement intersections on Major Collector roadways posted 45 mph. The proposed right-in / right-out / left-out driveway on Lightfoot Road is approximately 380 feet north of the intersection of U.S. 60 and Lightfoot Road, which exceeds VDOT's minimum intersection spacing standards.

VDOT requires at least 305 feet of separation between partial access driveways and full-movement driveways on Principal Arterial roadways posted 45 mph. The proposed right-in / right-out driveway on U.S. 60 is approximately 280 feet west of Lightfoot Road and approximately 120 east of the Hardee's driveway, which does not meet VDOT's minimum intersection spacing standards. An Access Management Exception (AME) request form is enclosed.

VDOT Turn Lane Warrant Analysis

The projected build-out AM and PM peak hour traffic volumes at the proposed site driveway on Lightfoot Road were compared to the turn lane warrants in the Virginia Department of Transportation (VDOT) Access Management Design Standards for Entrances and Intersections.

 A southbound right-turn lane or taper on Lightfoot Road is <u>not</u> warranted, but the applicant is proposing a southbound right-turn taper to improve Lightfoot Road as much as possible along the property frontage

The VDOT turn lane warrant diagram is enclosed for reference.

Traffic Capacity Analysis

Traffic capacity analysis for the study intersections was performed using Synchro 10, which is a comprehensive software package that allows the user to model signalized and unsignalized intersections to determine levels-of-service based on the thresholds specified in the Highway Capacity Manual (HCM) -6^{th} Edition.

Table 3 summarizes the capacity analysis results for the signalized intersection of U.S. 60 at Lightfoot Road / Williamsburg Outlet Mall Driveway.

Table 3
Level-of-Service Summary for U.S. 60 at Lightfoot Road / Williamsburg Outlet Mall Driveway

	LANE		AM P	EAK HO	UR		PM P	EAK HO	UR
CONDITION	GROUP	Lane LOS	Lane Delay (sec)	Queue (ft)	Overall LOS (Delay)	Lane LOS	Lane Delay (sec)	Queue (ft)	Overall LOS (Delay)
	EBU/L	D	50.1	219		Е	71.4	320	
	EBT	В	15.8	218		C	25.7	365	
	EBR	A	0.1	0		A	0.2	0	
	WBL	D	49.1	45		D	50.6	85	
Existing 2018	WBT	C	25.1	207	С	C	32.1	378	C
Traffic Conditions	WBR	A	0.1	0	_	A	0.2	0	(30.7 sec)
Traffic Colluitions	NBL	D	49.4	51	(23.6 sec)	D	50.7	85	(30.7 sec)
	NBL/T	D	49.4	53		D	50.5	87	
	NBR	A	1.2	0		A	1.7	0	
	SBT/L	D	50.7	173		Е	57.8	371	
	SBR	A	8.9	49		A	7.8	78	
	EBU/L	D	50.8	212		E	75.3	319	
	EBT	C	20.3	214		C	32.1	356	
	EBR	A	4.0	34		A	4.6	47	
	WBL	D	53.4	104		E	58.5	174	
No-Build 2020	WBT	C	27.9	218	C	D	35.9	382	D
Traffic Conditions	WBR	A	0.1	0		A	0.2	0	_
Traffic Conditions	NBL	D	51.3	76	(26.0 sec)	D	54.2	140	(35.1 sec)
	NBL/T	D	51.0	76		D	54.1	141	
	NBR	A	2.2	0		В	11.6	60	
	SBT/L	D	51.7	195		Е	65.4	396	
	SBR	A	8.6	52		В	13.8	138	
	EBU/L	D	51.7	251		Е	60.6	315	
	EBT	C	20.7	201		C	33.5	350	
	EBR	A	3.9	34		A	4.7	47	
	WBL	Е	57.1	107		Е	56.2	172	
Build 2020	WBT	C	32.0	229	С	D	48.0	458	D
Traffic Conditions	WBR	A	0.1	0	_	Α	0.2	0	
Traffic Conditions	NBL	D	52.2	77	(28.3 sec)	D	54.4	140	(39.0 sec)
	NBL/T	D	52.3	81		D	54.3	143	
	NBR	A	2.3	0		В	11.6	60	
	SBT/L	D	52.2	239		E	72.7	470	
	SBR	A	7.7	51		В	16.4	163	

Capacity analysis indicates this intersection currently operates at LOS C during the AM and PM peak hours. Under no-build 2020 traffic conditions, this intersection is expected to operate at LOS C during the AM peak hour and at LOS D during the PM peak hour. Under build 2020 traffic conditions, this intersection is projected to continue to operate at LOS C during the AM peak hour and at LOS D during the PM peak hour with all movements operating at LOS E or better.

The following improvement is recommended to accommodate the projected queue length on the eastbound U.S. 60 left-turn lane:

• Extend the eastbound left-turn lane on U.S. 60 from 275 feet to 325 feet

Table 4 summarizes the capacity analysis results for the unsignalized intersection of Lightfoot Road at Site Driveway.

Table 4
Level-of-Service Summary for Lightfoot Road at Site Driveway

	LANE		AM PE	AK HOU	R	PM PEAK HOUR						
CONDITION	LANE GROUP	Lane LOS	Lane Delay (sec)	Queue (ft)	Overall LOS (Delay)	Lane LOS	Lane Delay (sec)	Queue (ft)	Overall LOS (Delay)			
Existing 2018 Traffic Conditions	EBL ¹ EBR ¹ NBL/T ² SBT/R	B B A	14.3 10.1 8.0	3 0 0	N/A ³	C B A	22.4 12.9 9.0	3 0 0	N/A ³			
No-Build 2020 Traffic Conditions	EBL ¹ EBR ¹ NBL/T ² SBT/R	B 15.1 3 B 10.5 0 A 8.1 0		0	N/A ³	C B A	24.3 13.3 9.1	3 0 0	N/A ³			
Build 2020 Traffic Conditions	EBL ¹ EBR ¹ NBT SBT/R	C B -	15.4 11.3	3 13 -	N/A ³	D B -	25.5 14.8	5 13 -	N/A ³			

Level of service for minor approach.

Capacity analysis indicates the minor street left-turn movement currently operates with short delays (less than 25 seconds) during the AM and PM peak hours. Under no-build 2020 traffic conditions, the minor street left-turn movement is expected to continue to operate with short delays (less than 25 seconds) during the AM and PM peak hours.

The proposed redevelopment includes shifting this driveway approximately 180 feet to the north along Lightfoot Road, converting it to partial access with a right-in / right-out / left-out configuration, and constructing a southbound right-turn taper on Lightfoot Road. Under the build 2020 traffic conditions, the minor street left-turn movement is projected to operate with short delays (less than 25 seconds) during the AM peak hour, and with moderate delays (between 25 and 50 seconds) during the PM peak hour with the proposed improvements.

^{2.} Level of service for major street left turn movement.

^{3.} HCM methodology does not provide lane group or overall LOS, delay, and queue lengths for major street through movements or right turns at unsignalized intersections.

Table 5 summarizes the capacity analysis results for the unsignalized intersection of U.S. 60 at Right-in / Right-out Driveway.

Table 5
Level-of-Service Summary for U.S. 60 at Right-in / Right-out Driveway

	LANIE		AM PE	AK HOU	R		PM PEAK HOUR						
CONDITION	LANE GROUP	LOS Delay Queue LO		Overall LOS (Delay)	Lane LOS	Lane Delay (sec)	Queue (ft)	Overall LOS (Delay)					
Existing 2018 Traffic Conditions	EBT WBT WBR SBR ¹	- - - B	- - 10.8	- - 3	N/A ²	- - - B	- - 14.8	- - - 5	N/A ²				
No-Build 2020 Traffic Conditions	EBT WBT WBR SBR ¹	- - - B	- - - 11.1	- - 3	N/A ²	- - - C	- - - 15.7	- - - 5	N/A ²				
Build 2020 Traffic Conditions	EBT - WBT - WBR - SBR ¹ B		- - - 11.4	- - - 10	N/A ²	- - - C	- - - 16.7	- - - 15	N/A ²				

Level of service for minor approach.

Capacity analysis indicates the minor street right-turn movement currently operates with short delays (less than 25 seconds) during the AM and PM peak hours. Under no-build and build 2020 conditions, the minor street right-turn movement is expected to continue to operate with short delays (less than 25 seconds) at build out of the proposed redevelopment. No improvements are warranted or recommended at this intersection.

Recommendations

Based on the capacity analysis, the following improvements are recommended to accommodate the projected 2020 traffic volumes:

U.S. 60 at Lightfoot Road / Williamsburg Outlet Mall Driveway:

Extend the eastbound left-turn lane on U.S. 60 from 275 feet to 325 feet

<u>Lightfoot Road at Proposed Right-in / Right-out / Left-out Driveway:</u>

- Construct the site driveway with one ingress lane and two egress lanes
- Construct a southbound taper on Lightfoot Road

Figure 13 shows the recommended roadway laneage.

HCM methodology does not provide lane group or overall LOS, delay, and queue lengths for major street through movements or right turns at unsignalized intersections.

Ms. Susan Kassel Page 9 of 9

Based on the results of the traffic capacity analysis, we recommend approval of the AME request for the existing right-in / right-out driveway on U.S. 60 that will remain for the following reasons:

- The applicant will close the eastern right-in / right-out driveway on U.S. 60
- The full-movement site driveway on Lightfoot Road will be downgraded to a partial access driveway, and shifted approximately 180 feet to the north to increase the separation from U.S. 60
- All of the study intersections will function at an acceptable overall level-of-service at build-out of the proposed redevelopment
- Figure 14 shows that this site is on an established business corridor on a highway where the existing driveway spacing does not meet current standards

We appreciate your attention to this matter. Please contact me at (804) 217-8560 if you have any questions about this report.

Sincerely yours,

Ramey Kemp & Associates, Inc.

Carl Hultgren, P.E., PTOE Regional Manager

Enclosures: Figures, VDOT turn lane warrant diagram, Traffic count data, Synchro output

Copy to: Mr. Paul Holt, AICP, York County Planning

Ms. Ellen Cook, York County Planning

Mr. Jason Fowler, P.E., VDOT Mr. Glenn Brooks, P.E., VDOT Mr. Andy Sadler, Woodfin

Mr. Timothy Trant, Kaufman & Canoles, P.C.

Mr. Dan Caskie, P.E., Bay Companies

Inset

LEGEND

Study Intersection

Site Boundary

Overview

Lightfoot Road C-Store York County and James City County, Virginia Site Location and Study Intersections

Scale: Not to Scale

Lightfoot Road C-Store York County and James City County, Virginia

Conceptual Site Plan

Scale: Not to Scale

X' Storage (In Feet)

Lightfoot Road C-Store York County and James City County, Virginia Existing Lane Configurations

Scale: Not to Scale

X (Y) AM (PM) Peak Hour

Lightfoot Road C-Store York County and James City County, Virginia Existing (2018)
Peak Hour Traffic Volumes

Scale: Not to Scale

X (Y) AM (PM) Peak Hour

Lightfoot Road C-Store York County and James City County, Virginia Lightfoot Apartments
Site Trips

Scale: Not to Scale

Williamsburg Outlet Mall Driveway

LEGEND

X% (Y%) Entering (Exiting) Trip Distribution

Primary Site Trip Assignment

Williamsburg Outlet Mall Driveway

LEGEND

X (Y) AM (PM) Peak Hour

Pass-By Site Trip Distribution

Williamsburg Outlet Mall Driveway

Pass-By Site Trip Assignment

Williamsburg Outlet Mall Driveway

LEGEND

X% (Y%) AM (PM) Trip Distribution

LEGEND

X (Y) AM (PM) Peak Hour

Lightfoot Road C-Store York County and James City County, Virginia Lighfoot Marketplace Distribution and Assignments

Scale: Not to Scale

X (Y) AM (PM) Peak Hour

Lightfoot Road C-Store York County and James City County, Virginia Total Approved Development Volumes

Scale: Not to Scale

X (Y) AM (PM) Peak Hour

Lightfoot Road C-Store York County and James City County, Virginia No-Build (2020) Peak Hour Traffic Volumes

Scale: Not to Scale

X (Y) AM (PM) Peak Hour

Lightfoot Road C-Store York County and James City County, Virginia

Existing Site Trip Adjustment

Scale: Not to Scale

X' Intersection Spacing (In Feet)

Lightfoot Road C-Store York County and James City County, Virginia

1/31/2007 Aerial of Corridor

Scale: Not to Scale

Appropriate Radius required at all Intersections and Entrances (Commercial or Private).

LEGEND

PHV - Peak Hour Volume (also Design Hourly Volume equivalent)

Adjustment for Right Turns

For posted speeds at or under 45 mph, PHV right turns > 40, and PHV total < 300.

Adjusted right turns = PHV Right Turns - 20

If PHV is not known use formula: PHV = ADT x K x D

K = the percent of AADT occurring in the peak hour

D = the percent of traffic in the peak direction of flow

Note: An average of 11% for K x D will suffice.

When right turn facilities are warranted, see Figure 3-1 for design criteria.*

FIGURE 3-26 WARRANTS FOR RIGHT TURN TREATMENT (2-LANE HIGHWAY)

^{*} Rev. 1/15

VHB Engineering NC, P.C. 4000 WestChase Boulevard, Suite 530

4000 WestChase Boulevard, Suite 530 Raleigh, NC 27607 p: 919-829-0328 f: 919.833-0034

File Name: US60@Lightfoot

Site Code :

Start Date : 10/20/2016

Page No : 1

Groups Printed- Passenger Veh	nicles - Single Unit - TTST - Bic	ycles on Crosswalk - Pedestrians
-------------------------------	-----------------------------------	----------------------------------

	US 60	(Richi	mond R	load)				US 60	(Rich	mond F	Road)	Lightfoot Road							
		South	bound	•		Westb	ound			North	oound			Eastb	ound				
Start Time	Left	Thru	Right	Peds	Left		Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Exclu. Total	Inclu. Total	Int. Total
07:00 AM	33	151	47	0	35	20	24	0	10	118	21	0	5	1	8	0	0	473	473
07:15 AM	27	140	13	0	15	9	25	0	11	138	24	0	6	3	8	0	0	419	419
07:30 AM	35	152	18	0	32	8	33	0	6	81	28	0	7	5	15	0	0	420	420
07:45 AM	51	160	9	1	24	9	38	0	7	112	31	0	14	7	5	0	1	467	468
Total	146	603	87	1	106	46	120	0	34	449	104	0	32	16	36	0	1	1779	1780
08:00 AM	40	144	13	0	20	8	25	2	9	109	31	0	9	5	10	0	2	423	425
08:15 AM	50	132	5	0	25	8	39	0	3	113	38	0	7	4	9	0	0	433	433
08:30 AM	53	153	16	0	27	10	44	0	5	105	19	0	9	3	8	0	0	452	452
08:45 AM	49	146	20	0	45	11	45	0	7	140	43	0	11	8	9	0	0	534	534
Total	192	575	54	0	117	37	153	2	24	467	131	0	36	20	36	0	2	1842	1844
*** BREAK ***																			
04:00 PM	60	216	17	0	51	8	82	0	6	195	47	0	17	8	16	0	0	723	723
04:15 PM	55	181	27	0	58	8	67	0	14	221	48	0	12	9	10	0	0	710	710
04:30 PM	68	195	18	0	52	18	80	0	11	210	56	0	20	10	16	0	0	754	754
04:45 PM	53	201	16	0	67	8	94	0	17	208	40	0	22	10	16	0	0	752	752
Total	236	793	78	0	228	42	323	0	48	834	191	0	71	37	58	0	0	2939	2939
05:00 PM	54	204	15	0	57	12	68	0	14	201	55	0	17	12	11	0	0	720	720
05:15 PM	43	248	21	0	67	9	74	0	18	243	50	0	16	7	16	0	0	812	812
05:30 PM	42	211	22	0	57	10	68	0	10	183	44	0	21	12	10	0	0	690	690
05:45 PM	51	185	25	0	65	10	61	0	19	173	56	0	16	7	21	0	0	689	689
Total	190	848	83	0	246	41	271	0	61	800	205	0	70	38	58	0	0	2911	2911
Grand Total	764	2819	302	1	697	166	867	2	167	2550	631	0	209	111	188	0	3	9471	9474
Apprch %	19.7	72.6	7.8		40.3	9.6	50.1		5	76.2	18.8		41.1	21.9	37				
Total %	8.1	29.8	3.2		7.4	1.8	9.2		1.8	26.9	6.7		2.2	1.2	2		0	100	
Passenger Vehicles	746	2735	297	_	684	160	851	_	166	2475	622	_	201	110	185		0	0	9232
% Passenger Vehicles	97.6	97	98.3	0	98.1	96.4	98.2	0	99.4	97.1	98.6	0	96.2	99.1	98.4	0	0	0	97.4
Single Unit	14	81	4		12	6	15		0	72	8		8	0	3		0	0	223
% Single Unit	1.8	2.9	1.3	0	1.7	3.6	1.7	0	<u>0</u> 1	2.8	1.3	0	3.8	0	1.6	0	0	0	2.4 16
TTST % TTST	4 0.5	3 0.1	1 0.3	0	0.1	0	1 0.1	0	0.6	3 0.1	0.2	0	0	0.9	0	0	0	0	
	0.5	0.1	0.3	U	0.1	0	0.1	U	0.6	0.1	0.2	- 0	0	0.9	0	U	0	0	0.2
Bicycles on Crosswalk	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Bicycles on Crosswalk Pedestrians	0	0	0	U	0	0	0	U	0	0	0	U	0	0	0	U	0	0	3
% Pedestrians	0	0	0	100	0	0	0	100	0	0	0	0	0	0	0	0	0	0	0
								1				- 1							

File Name : 1-US 60 and Exxon Driveways AM Site Code : 00000000 Start Date : 6/12/2018

: 1

Page No Groups Printed- All Vehicles (no classification)

		So	US 60 outhbo					fake approach Westbound										n (N) D thwest		y	
Start Time	Thru	Left	Hard Left	Peds	App. Total	Hard Right	Right	Left	Peds	App. Total	Right	Bear Right	Thru	Peds	App. Total	Hard Right	Bear Left	Hard Left	Peds	App. Total	Int. Total
07:00 AM	0	0	0	0	0	0	0	0	0	0	1	2	0	0	3	3	0	0	0	3	6
07:15 AM	0	0	0	0	0	0	1	0	0	1	0	3	0	0	3	2	0	0	0	2	6
07:30 AM	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	2	0	0	0	2	3
07:45 AM	0	0	0	0	0	0	0	0	0	0	1	1	0	0	2	0	0	0	0	0	2
Total	0	0	0	0	0	0	2	0	0	2	2	6	0	0	8	7	0	0	0	7	17
08:00 AM	0	0	0	0	0	0	0	0	0	0	1	2	0	0	3	4	0	0	0	4	7
08:15 AM	0	0	0	0	0	0	0	0	0	0	3	4	0	0	7	7	0	0	0	7	14
08:30 AM	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2	4	0	0	0	4	6
08:45 AM	0	0	0	0	0	0	0	0	0	0	0	4	0	0	4	3	0	0	0	3	7
Total	0	0	0	0	0	0	0	0	0	0	4	12	0	0	16	18	0	0	0	18	34
Grand Total Apprch %	0	0	0	0	0	0	100	0	0	2	6 25	18 75	0	0	24	25 100	0	0	0	25	51
Total %	0	0	0	0	0	0	3.9	0	0	3.9	11.8	35.3	0	0	47.1	49	0	0	0	49	

		S	US 60 outhbo			fake approach Westbound					N	US 60 orthbo	-								
Start Time	Thru	Left	Hard Left	Peds	App. Total	Hard Right	Right	Left	Peds	App. Total	Right	Bear Right	Thru	Peds	App. Total	Hard Right	Bear Left	Hard Left	Peds	App. Total	Int. Total
Peak Hour Ar	nalysis	From	07:00	AM to (08:45 AN	1 - Pea	k 1 of	1				-		•							
Peak Hour fo	r Entire	Inters	section	Begins	s at 08:0	0 AM															
08:00 AM	0	0	0	0	0	0	0	0	0	0	1	2	0	0	3	4	0	0	0	4	7
08:15 AM	0	0	0	0	0	0	0	0	0	0	3	4	0	0	7	7	0	0	0	7	14
08:30 AM	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2	4	0	0	0	4	6
08:45 AM	0	0	0	0	0	0	0	0	0	0	0	4	0	0	4	3	0	0	0	3	7
Total Volume	0	0	0	0	0	0	0	0	0	0	4	12	0	0	16	18	0	0	0	18	34
% App. Total	0	0	0	0		0	0	0	0		25	75	0	0		100	0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.333	.750	.000	.000	.571	.643	.000	.000	.000	.643	.607

File Name : 1-US 60 and Exxon Driveways PM Site Code : 00000000 Start Date : 6/12/2018

: 1

Page No Groups Printed- All Vehicles (no classification)

		US	S 60				proach	1			S 60		Е	xxon (N	l) Drive	way	
		Soutl	nbound				bound			North	nbound				, estbour		
Start Time	Thru	Left	Hard Left	App. Total	Hard Right	Right	Left	App. Total	Right	Bear Right	Thru	App. Total	Hard Right	Bear Left	Hard Left	App. Total	Int. Total
04:00 PM	0	0	0	0	0	1	0	1	0	5	0	5	5	0	0	5	11
04:15 PM	0	0	0	0	0	1	0	1	1	3	0	4	8	0	0	8	13
04:30 PM	0	0	0	0	0	0	0	0	1	3	0	4	5	0	0	5	9
04:45 PM	0	0	0	0	0	0	0	0	0	1	0	1	2	0	0	2	3
Total	0	0	0	0	0	2	0	2	2	12	0	14	20	0	0	20	36
05:00 PM	0	0	0	0	0	2	0	2	0	3	0	3	7	0	0	7	12
05:15 PM	0	0	0	0	0	0	0	0	0	2	0	2	6	0	0	6	8
05:30 PM	0	0	0	0	0	0	0	0	0	2	0	2	2	0	0	2	4
05:45 PM	0	0	0	0	0	2	0	2	0	1	0	1	4	0	0	4	7
Total	0	0	0	0	0	4	0	4	0	8	0	8	19	0	0	19	31
Grand Total	0	0	0	0	0	6	0	6	2	20	0	22	39	0	0	39	67
Apprch %	0	0	0		0	100	0		9.1	90.9	0		100	0	0		
Total %	0	0	0	0	0	9	0	9	3	29.9	0	32.8	58.2	0	0	58.2	

			60			fake ap		ı			60		Е	`	l) Drivew	,	
		South	bound			Westl	bound			North	bound			Southw	estboun	ıd	
Start Time	Thru	Left	Hard Left	App. Total	Hard Right	Right	Left	App. Total	Right	Bear Right	Thru	App. Total	Hard Right	Bear Left	Hard Left	App. Total	Int. Total
Peak Hour Analy	ysis Fron	า 04:00	PM to 0)5:45 PM	- Peak 1	of 1											
Peak Hour for E	ntire Inte	rsectior	Begins	at 04:15	PM												
04:15 PM	0	0	0	0	0	1	0	1	1	3	0	4	8	0	0	8	13
04:30 PM	0	0	0	0	0	0	0	0	1	3	0	4	5	0	0	5	9
04:45 PM	0	0	0	0	0	0	0	0	0	1	0	1	2	0	0	2	3
05:00 PM	0	0	0	0	0	2	0	2	0	3	0	3	7	0	0	7	12
Total Volume	0	0	0	0	0	3	0	3	2	10	0	12	22	0	0	22	37
% App. Total	0	0	0		0	100	0		16.7	83.3	0		100	0	0		
PHF	.000	.000	.000	.000	.000	.375	.000	.375	.500	.833	.000	.750	.688	.000	.000	.688	.712

File Name: 2-Exxon and US 60 AM

Site Code:

Start Date : 6/12/2018

Page No : 1

Groups Printed- All Vehicles (no classification)

						GIO	upsrii	iileu- A	All Vellic	ies (iiu	Ciassi	IICalio	'''						
			Exxon	1			Ligh	tfoot				Nissai	า			Ligh	ntfoot		
		So	uthbou	und			Westl	bound			No	orthbo	und			Eastl	bound		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Int. Total
07:00 AM	0	0	3	0	3	4	1	0	5	0	0	0	0	0	1	5	0	6	14
07:15 AM	2	0	7	0	9	2	2	0	4	0	0	0	0	0	2	2	0	4	17
07:30 AM	2	0	1	0	3	1	0	0	1	1	0	1	0	2	1	1	0	2	8
07:45 AM	1	0	1	0	2	1	3	0	4	0	0	0	0	0	2	2	0	4	10
Total	5	0	12	0	17	8	6	0	14	1	0	1	0	2	6	10	0	16	49
00.00 +3.5				0	2	ء ا	0	0	- 1				0	0.1		2	0	2	1 10
08:00 AM	I	0	1	0	2))	0	0	5	0	0	0	0	0	1	2	0	3	10
08:15 AM	0	0	1	1	2	2	1	0	3	1	0	0	0	1	0	2	0	2	8
08:30 AM	3	0	4	2	9	3	2	0	5	3	0	0	0	3	1	0	0	1	18
08:45 AM	5	0	1	0	6	2	0	0	2	0	0	0	0	0	5	1	0	6	14
Total	9	0	7	3	19	12	3	0	15	4	0	0	0	4	7	5	0	12	50
Grand Total	14	0	19	2	36	20	9	0	29	l 5	0	1	0	6	13	15	0	28	99
		-			30		_		29		-	16.7	0	0			0	28	99
Appreh %	38.9	0	52.8	8.3	25.4	69	31	0	20.2	83.3	0	16.7	0		46.4	53.6	0		
Total %	14.1	0	19.2	3	36.4	20.2	9.1	0	29.3	5.1	0	1	0	6.1	13.1	15.2	0	28.3	

		Exx	_			ightfoo	I		Niss	-			ightfoo		
		Southb	ound		W	estbour	nd		Northb	ound		Ea	estbour	ıd	
Start Time	Right	Thru	Left	App. Total	Right	Left	App. Total	Right	Thru	Left	App. Total	Right	Left	App. Total	Int. Total
Peak Hour Analysis From 0	7:00 AM to 08	8:45 AM - Pe	ak 1 of 1												
Peak Hour for Entire Int	ersection Beg	gins at 07:00	0 AM												
07:00 AM	0	0	3	3	4	1	5	0	0	0	0	1	5	6	14
07:15 AM	2	0	7	9	2	2	4	0	0	0	0	2	2	4	17
07:30 AM	2	0	1	3	1	0	1	1	0	1	2	1	1	2	8
07:45 AM	1	0	1	2	1	3	4	0	0	0	0	2	2	4	10
Total Volume	5	0	12	17	8	6	14	1	0	1	2	6	10	16	49
% App. Total	29.4	0	70.6		57.1	42.9		50	0	50		37.5	62.5		
PHF	.625	.000	.429	.472	.500	.500	.700	.250	.000	.250	.250	.750	.500	.667	.721

File Name: 2-Exxon and US 60 PM

Site Code:

Start Date : 6/12/2018

Page No : 1

Groups Printed- All Vehicles (no classification)

						GIU	ups FII	iileu- /	All Vellic	162 (110	Ciassi	iicatio	!! <i>)</i>						
			Exxon	1			Ligh	tfoot				Nissai	n			Ligh	ntfoot		
		Sc	outhboo	und			Westl	bound			No	orthbo	und			Eastl	bound		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Int. Total
04:00 PM	0	0	0	0	0	4	2	0	6	0	0	5	0	5	1	0	0	1	12
04:15 PM	1	0	2	0	3	7	0	0	7	0	0	0	0	0	3	0	0	3	13
04:30 PM	0	0	0	0	0	3	2	0	5	2	0	2	0	4	2	1	0	3	12
04:45 PM	3	0	2	0	5	2	1	0	3	0	0	0	0	0	0	0	0	0	8
Total	4	0	4	0	8	16	5	0	21	2	0	7	0	9	6	1	0	7	45
05:00 PM	0	0	0	0	0	8	2	0	10	7	1	0	0	8	1	0	0	1	19
05:15 PM	0	1	2	0	3	5	1	0	6	8	1	1	0	10	2	0	0	2	21
05:30 PM	0	0	2	0	2	5	1	0	6	3	0	4	0	7	1	0	0	1	16
05:45 PM	2	0	0	0	2	4	0	0	4	0	0	0	0	0	1	2	0		9
Total	2	1	4	0	7	22	4	0	26	18	2	5	0	25	5	2	0	7	65
Grand Total	6	1	8	0	15	38	9	0	47	20	2	12	0	34	11	3	0	14	110
Apprch %	40	6.7	53.3	0		80.9	19.1	0		58.8	5.9	35.3	0		78.6	21.4	0		
Total %	5.5	0.9	7.3	0	13.6	34.5	8.2	0	42.7	18.2	1.8	10.9	0	30.9	10	2.7	0	12.7	

		Exx	on		L	.ightfoo	t		Nis	san		L	.ightfoo	t	
		Southb	ound		W	estbour	nd		Northb	ound		Ea	astbour	ıd	
Start Time	Right	Thru	Left	App. Total	Right	Left	App. Total	Right	Thru	Left	App. Total	Right	Left	App. Total	Int. Total
Peak Hour Analysis From 0	4:00 PM to 05	5:45 PM - Pea	ak 1 of 1												
Peak Hour for Entire Into	ersection Be	gins at 05:00	0 PM												
05:00 PM	0	0	0	0	8	2	10	7	1	0	8	1	0	1	19
05:15 PM	0	1	2	3	5	1	6	8	1	1	10	2	0	2	21
05:30 PM	0	0	2	2	5	1	6	3	0	4	7	1	0	1	16
05:45 PM	2	0	0	2	4	0	4	0	0	0	0	1	2	3	9
Total Volume	2	1	4	7	22	4	26	18	2	5	25	5	2	7	65
% App. Total	28.6	14.3	57.1		84.6	15.4		72	8	20		71.4	28.6		
PHF	.250	.250	.500	.583	.688	.500	.650	.563	.500	.313	.625	.625	.250	.583	.774

Lightfoot Road C-Store - York County, VA 1: Commercial Driveway /Lightfoot Road & U.S. 60

	۶	→	•	•	←	•	4	†	<i>></i>	>	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^↑	7	ሻ	^↑	7	ሻ	सी	7		र्स	7
Traffic Volume (vph)	196	587	55	24	476	134	37	20	37	119	38	156
Future Volume (vph)	196	587	55	24	476	134	37	20	37	119	38	156
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	300		175	0		100	0		0
Storage Lanes	1		1	1		1	1		1	0		1
Taper Length (ft)	100			100			100			100		
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1681	1741	1583	0	1794	1583
Flt Permitted	0.950			0.950			0.950	0.984			0.963	
Satd. Flow (perm)	1770	3539	1583	1770	3539	1583	1681	1741	1583	0	1794	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			149			208			149			181
Link Speed (mph)		45			45			25			45	
Link Distance (ft)		182			666			417			201	
Travel Time (s)		2.8			10.1			11.4			3.0	
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Shared Lane Traffic (%)							25%					
Lane Group Flow (vph)	228	683	64	28	553	156	32	34	43	0	182	181
Turn Type	Prot	NA	Perm	Prot	NA	Free	Split	NA	Perm	Split	NA	Perm
Protected Phases	5	2		1	6		3	3		4	4	
Permitted Phases			2			Free			3			4
Detector Phase	5	2	2	1	6		3	3	3	4	4	4
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	13.0	13.0	13.0	13.0	16.0		16.0	16.0	16.0	16.0	16.0	16.0
Total Split (s)	20.0	45.0	45.0	19.0	44.0		20.0	20.0	20.0	26.0	26.0	26.0
Total Split (%)	18.2%	40.9%	40.9%	17.3%	40.0%		18.2%	18.2%	18.2%	23.6%	23.6%	23.6%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0		-2.0	-2.0	-2.0		-2.0	-2.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0		4.0	4.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lead	Lead	Lag	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	C-Min	C-Min	None	C-Min		None	None	None	None	None	None
Act Effct Green (s)	21.6	63.8	63.8	9.3	46.7	110.0	9.7	9.7	9.7		18.3	18.3
Actuated g/C Ratio	0.20	0.58	0.58	0.08	0.42	1.00	0.09	0.09	0.09		0.17	0.17
v/c Ratio	0.66	0.33	0.07	0.19	0.37	0.10	0.22	0.22	0.16		0.61	0.44
Control Delay	50.1	15.8	0.1	49.1	25.1	0.1	49.4	49.4	1.2		50.7	8.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
Total Delay	50.1	15.8	0.1	49.1	25.1	0.1	49.4	49.4	1.2		50.7	8.9
LOS	D	В	Α	D	С	Α	D	D	Α		D	Α
Approach Delay		22.8			20.7			30.4			29.9	
Approach LOS		С			С			С	_		С	
Queue Length 50th (ft)	147	145	0	19	146	0	22	24	0		120	0
Queue Length 95th (ft)	219	218	0	45	207	0	51	53	0		173	49
Internal Link Dist (ft)		102			586	,		337	,		121	
Turn Bay Length (ft)		06=1		300	4550	175		6=-	100		c	
Base Capacity (vph)	347	2051	980	241	1550	1583	244	253	357		365	466
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0		0	0

Lightfoot Road C-Store - York County, VA

1: Commercial Driveway /Lightfoot Road & U.S. 60

Existing (2018) Conditions Timing Plan: AM Peak Hour

	۶	→	\rightarrow	•	←	•	4	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0		0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0		0	0
Reduced v/c Ratio	0.66	0.33	0.07	0.12	0.36	0.10	0.13	0.13	0.12		0.50	0.39

Intersection Summary

Area Type: Other

Cycle Length: 110 Actuated Cycle Length: 110

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 65

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.66 Intersection Signal Delay: 23.6 Intersection Capacity Utilization 49.3%

Intersection LOS: C ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 1: Commercial Driveway /Lightfoot Road & U.S. 60

-							
Intersection							
Int Delay, s/veh	0.3						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	ሻ	7		ર્ન	†	7	
Traffic Vol, veh/h	7	9	5	345	304	12	
Future Vol, veh/h	7	9	5	345	304	12	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0 # 0	0	-	-	-	50	
Veh in Median Storage Grade, %	e, # 0 0	-	-	0	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	8	10	5	375	330	13	
WWW.CT IOW	Ü	10	Ū	070	000	10	
Major/Minor	Minor2	ı	Major1	N	Major2		
Conflicting Flow All	715	330	343	0	- viajoiz	0	
Stage 1	330	-	-	-	_	-	
Stage 2	385	-	-	-	-	_	
Critical Hdwy	6.42	6.22	4.12	-	-	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	-	
Follow-up Hdwy		3.318		-	-	-	
Pot Cap-1 Maneuver	397	712	1216	-	-	-	
Stage 1	728	-	-	-	-	-	
Stage 2	688	-	-	-	-	-	
Platoon blocked, %	205	710	101/	-	-	-	
Mov Cap-1 Maneuver	395	712	1216	-	-	-	
Mov Cap-2 Maneuver	395 724	-	-	-	-	-	
Stage 1 Stage 2	688	-	-	-	-	-	
Staye 2	000	-	-	-	-	-	
Annroach	ΓD		MD		CD		
Approach	11.0		NB 0.1		SB 0		
HCM Control Delay, s HCM LOS	11.9 B		0.1		U		
HOW LUS	В						
Minor Lane/Major Mvn	nt	NBL	NIRT	EBLn1 I	ERI n?	SBT	SBR
Capacity (veh/h)	iii.	1216	IND I	395	712	JDI	JDK -
HCM Lane V/C Ratio		0.004		0.019		-	-
HCM Control Delay (s))	8	0	14.3	10.1	_	_
HCM Lane LOS	′	A	A	В	В	_	_
HCM 95th %tile Q(veh	1)	0	-	0.1	0	_	_
2 2	,	J		.	J		

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		^	^	7		7
Traffic Vol, veh/h	0	838	653	12	0	18
Future Vol, veh/h	0	838	653	12	0	18
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	0	-	0
Veh in Median Storag		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	911	710	13	0	20
Major/Minor	Major1	N	Major2	Λ	/linor2	
Conflicting Flow All	-	0	-	0	-	355
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.32
Pot Cap-1 Maneuver	0	-	-	-	0	641
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver		-	-	-	-	641
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		10.8	
HCM LOS					В	
Minor Lane/Major Mvr	mt	EBT	WBT	WBR S	SBLn1	
Capacity (veh/h)	-				641	
HCM Lane V/C Ratio		_	_	_	0.031	
HCM Control Delay (s)	_	_	_	10.8	
HCM Lane LOS	,	_	_	_	В	
HCM 95th %tile Q(veh	n)	_	_	_	0.1	
	,					

2.0

-2.0

4.0

Lead

Yes

None

17.7

0.16

0.84

71.4

0.0

71.4

169

#320

284

0

Ε

2.0

-2.0

4.0

Lag

Yes

C-Min

51.6

0.47

0.56

25.7

0.0

25.7

32.9

C

С

275

365

102

1660

0

2.0

-2.0

4.0

Lag

Yes

C-Min

51.6

0.47

0.09

0.2

0.0

0.2

Α

0

0

821

0

2.0

-2.0

4.0

Lead

Yes

None

11.4

0.10

0.36

50.6

0.0

50.6

D

44

85

300

241

0

2.0

-2.0

4.0

Lag

Yes

C-Min

43.0

0.39

0.68

32.1

0.0

32.1

27.4

303

378

586

1406

0

C

С

110.0

1.00

0.14

0.2

0.0

0.2

Α

0

0

175

1583

0

2.0

-2.0

4.0

Lead

Yes

None

11.4

0.10

0.36

50.7

0.0

D

43

85

244

0

50.7

2.0

-2.0

4.0

Lead

Yes

None

11.4

0.10

0.36

50.5

0.0

50.5

33.9

D

C

45

87

337

253

0

2.0

-2.0

4.0

Lead

Yes

None

11.4

0.10

0.22

1.7

0.0

1.7

Α

0

0

100

357

0

2.0

Lag

Yes

None

2.0

-2.0

4.0

Lag

Yes

None

24.3

0.22

0.81

57.8

0.0

57.8

31.8

208

#371

121

Ε

С

2.0

-2.0

4.0

Lag

Yes

None

24.3

0.22

0.56

7.8

0.0

7.8

Α

0

78

Timing Plan: PM Peak Hour 1: Commercial Driveway /Lightfoot Road & U.S. 60 t ↲ **EBR** Lane Group **EBL EBT WBL WBT WBR** NBL **NBT NBR SBL SBT SBR** ٦ 44 44 7 7 Lane Configurations 7 ች 7 ኝ 4 4 Traffic Volume (vph) 222 77 40 322 865 71 61 879 205 60 248 48 Future Volume (vph) 222 865 71 879 205 77 40 60 248 48 322 61 1900 1900 1900 1900 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 Storage Length (ft) 300 0 0 175 0 100 0 0 Storage Lanes 1 1 1 1 1 0 1 1 Taper Length (ft) 100 100 100 100 Satd. Flow (prot) 1770 3539 1770 3539 1583 1681 0 1583 1583 1741 1583 1788 Flt Permitted 0.950 0.950 0.950 0.984 0.960 Satd. Flow (perm) 1770 3539 1583 1770 3539 1583 1681 1741 1583 0 1788 1583 Right Turn on Red Yes Yes Yes Yes Satd. Flow (RTOR) 149 208 149 346 Link Speed (mph) 45 25 45 45 Link Distance (ft) 182 417 201 666 Travel Time (s) 2.8 10.1 11.4 3.0 Peak Hour Factor 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 Shared Lane Traffic (%) 25% 930 76 319 Lane Group Flow (vph) 239 66 945 220 62 64 65 0 346 Turn Type NA Perm NA Split NA Perm Split NA Prot Prot Free Perm **Protected Phases** 5 2 1 6 3 3 4 4 Permitted Phases 2 Free 3 4 **Detector Phase** 5 2 2 1 3 3 3 4 6 4 4 Switch Phase 5.0 5.0 5.0 5.0 5.0 Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 13.0 13.0 13.0 13.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 Total Split (s) 45.0 45.0 19.0 44.0 20.0 20.0 26.0 20.0 20.0 26.0 26.0 Total Split (%) 40.9% 40.9% 17.3% 40.0% 18.2% 18.2% 18.2% 18.2% 23.6% 23.6% 23.6% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0

All-Red Time (s)

Lead/Lag

v/c Ratio

Control Delay

Queue Delay

Approach Delay

Queue Length 50th (ft)

Queue Length 95th (ft)

Internal Link Dist (ft)

Turn Bay Length (ft)

Base Capacity (vph)

Starvation Cap Reductn

Approach LOS

Total Delay

LOS

Recall Mode

Lost Time Adjust (s)

Total Lost Time (s)

Lead-Lag Optimize?

Act Effct Green (s)

Actuated g/C Ratio

1: Commercial Driveway /Lightfoot Road & U.S. 60

Existing (2018) Conditions Timing Plan: PM Peak Hour

	۶	→	\rightarrow	•	←	•	•	†	<i>></i>	\	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0		0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0		0	0
Reduced v/c Ratio	0.84	0.56	0.09	0.27	0.67	0.14	0.25	0.25	0.18		0.80	0.56

Intersection Summary

Area Type: Other

Cycle Length: 110
Actuated Cycle Length: 110

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.84 Intersection Signal Delay: 30.7 Intersection Capacity Utilization 69.5%

Intersection LOS: C ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

And Delay, s/veh	Intersection							
ane Configurations	Int Delay, s/veh	0.1						
raffic Vol, veh/h 4	Movement			NBL				
iuture Vol, veh/h		7	7		- ની	- ↑		
Conflicting Peds, #/hr	Traffic Vol, veh/h	4		1				
Rign Control Stop KT Channelized Stop None Free None <td>Future Vol, veh/h</td> <td>4</td> <td></td> <td></td> <td>466</td> <td>615</td> <td></td> <td></td>	Future Vol, veh/h	4			466	615		
None	Conflicting Peds, #/hr	0	0	0	0	0	0	
Storage Length	Sign Control	Stop	Stop	Free	Free	Free	Free	
Yeh in Median Storage, # 0 - - 0 0 - - Stade, % 0 - - 0 0 - - 0 0 - - - 0 0 - - - 0 0 - - - 0 0 - - - - 0 0 -	RT Channelized	-	None	-	None	-	None	
Grade, % 0	Storage Length	0	0	-	-	-	50	
Peak Hour Factor 92 100 92 92 92 92 92 92 92 92 92 92 92 92 92	Veh in Median Storage	e, # 0	-	-	0	0	-	
Heavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Grade, %	0	-	-	0	0	-	
Avmi Flow 4 3 1 507 668 20 Alajor/Minor Minor2 Major1 Major2 Conflicting Flow All 1177 668 688 0 0 Stage 1 668 - - - - Citical Hdwy 6.42 6.22 4.12 - - Citical Hdwy Stg 1 5.42 - - - - Citical Hdwy Stg 2 5.42 - - - - - Citical Hdwy Stg 2 5.42 - - - - - - Citical Hdwy Stg 2 5.42 -	Peak Hour Factor	92	100	92	92	92	92	
Major/Minor Minor2 Major1 Major2 Major3 Major4 Major5 Major4 Major5 Major6 Major	Heavy Vehicles, %	2	2	2	2	2	2	
Conflicting Flow All 1177 668 688 0 - 0	Mvmt Flow	4	3	1	507	668	20	
Conflicting Flow All 1177 668 688 0 - 0								
Conflicting Flow All 1177 668 688 0 - 0	Major/Minor I	Minor2	ļ	Major1	N	Major2		
Stage 1	Conflicting Flow All					-	0	
Stage 2 509 - - - - - - -			-	-	_	-	_	
Critical Hdwy Stg 1 5.42			_	_	_	_	_	
Critical Hdwy Stg 1			6.22	4.12	_	_	_	
Critical Hdwy Stg 2 5.42			_	_	_	_	_	
Follow-up Hdwy 3.518 3.318 2.218			_	_	_	_	_	
Pot Cap-1 Maneuver 211 458 906			3.318	2.218	_	_	_	
Stage 1 510 Stage 2 604 Stage 2 604					_	_	_	
Stage 2	•			-	_	-	_	
Platoon blocked, %			-	_	_	-	_	
Mov Cap-1 Maneuver 211 458 906					_	-	_	
Nov Cap-2 Maneuver		211	458	906	_	-	_	
Stage 1 509 -	•			-	_	-	_	
Stage 2 604			-	_	_	-	_	
Approach EB NB SB HCM Control Delay, s 18.5 0 0 HCM LOS C Minor Lane/Major Mvmt NBL NBT EBLn1 EBLn2 SBT SBR Capacity (veh/h) 906 - 211 458 HCM Lane V/C Ratio 0.001 - 0.021 0.007 HCM Control Delay (s) 9 0 22.4 12.9 HCM Lane LOS A A C B			-	_	-	-	_	
ACM Control Delay, s 18.5 0 0 ACM LOS C Alinor Lane/Major Mvmt NBL NBT EBLn1 EBLn2 SBT SBR Capacity (veh/h) 906 - 211 458 HCM Lane V/C Ratio 0.001 - 0.021 0.007 HCM Control Delay (s) 9 0 22.4 12.9 HCM Lane LOS A A C B	otage 2							
ACM Control Delay, s 18.5 0 0 ACM LOS C Alinor Lane/Major Mvmt NBL NBT EBLn1 EBLn2 SBT SBR Capacity (veh/h) 906 - 211 458 HCM Lane V/C Ratio 0.001 - 0.021 0.007 HCM Control Delay (s) 9 0 22.4 12.9 HCM Lane LOS A A C B	Approach	FB		NB		SB		
Minor Lane/Major Mvmt								
Minor Lane/Major Mvmt NBL NBT EBLn1 EBLn2 SBT SBR Capacity (veh/h) 906 - 211 458 HCM Lane V/C Ratio 0.001 - 0.021 0.007 HCM Control Delay (s) 9 0 22.4 12.9 HCM Lane LOS A A C B	HCM LOS			3		J		
Capacity (veh/h) 906 - 211 458 HCM Lane V/C Ratio 0.001 - 0.021 0.007 HCM Control Delay (s) 9 0 22.4 12.9 HCM Lane LOS A A C B		J						
Capacity (veh/h) 906 - 211 458 HCM Lane V/C Ratio 0.001 - 0.021 0.007 HCM Control Delay (s) 9 0 22.4 12.9 HCM Lane LOS A A C B	Minor Lane/Maior Mym	nt	NRI	NRT	FRI n1 I	-RI n2	SRT	SBR
HCM Lane V/C Ratio 0.001 - 0.021 0.007 HCM Control Delay (s) 9 0 22.4 12.9 HCM Lane LOS A A C B		11					וטט	
HCM Control Delay (s) 9 0 22.4 12.9 HCM Lane LOS A A C B							-	-
HCM Lane LOS A A C B							-	-
		1					-	-
10 IVI 70 III 70 III 4 Q(VEII) U - U. I U		١					-	-
	HOW YOUR MURE LIVEN)	U	-	U. I	U	-	•

0.1					
EBI	EBT	WBT	WBR	SBL	SBR
				<u> </u>	7
0			9	0	20
0			9	0	20
					0
					Stop
-		-			None
_	-	_		_	0
e.# -	0	0	-	0	-
-,			_	0	_
92			92		92
					2
					22
0	1207	1000	10	J	~~
Major1		Major2		Vlinor2	
-	0	-	0	-	690
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	6.94
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	3.32
0	-	-	-	0	388
0	-	-	-	0	-
0	-	-	-	0	-
	-	-	-		
-	-	-	-	-	388
	-	-	-	-	-
-	_	-	-	-	_
_	_	_	_	_	_
FR		\/\/R		SB	
U		U			
				R	
mt	EBT	WBT	WBR S	SBLn1	
H					
III	-	-	-	388	
iii.	-	-	-	388 0.056	
	-	- - -	-	0.056	
)	- - -	- - -	- - -	0.056 14.8	
	- - - -	- - - -	- - -	0.056	
	8 EBL 0 0 0 Free	EBL EBT 0 1158 0 1158 0 0 0 Free Free - None - 0 92 92 2 2 2 0 1259 Major1 - 0	EBL EBT WBT	EBL EBT WBT WBR 0 1158 1270 9 0 1158 1270 9 0 0 0 0 Free Free Free Free - None - None - - 0 - e, # - 0 0 - 92 92 92 92 2 2 2 2 2 2 2 2 2 2 0 1259 1380 10 Major1 Major2 Major2 Major2 Major2 P	EBL EBT WBT WBR SBL 0 1158 1270 9 0 0 1158 1270 9 0 0 0 0 0 0 Free Free Free Stop - None - None - - 0 0 - 0 - 0 0 - 0 - - 0 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 0 0 0 - 0 0 0 - - - 0 0 - - - - - - - - - - -

	•	→	•	•	+	•	•	†	~	/		-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻ	^	7	*	ર્ન	7		ર્ન	7
Traffic Volume (vph)	200	561	128	75	469	144	75	20	88	134	44	179
Future Volume (vph)	200	561	128	75	469	144	75	20	88	134	44	179
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	300		175	0		100	0		0
Storage Lanes	1		1	1		1	1		1	0		1
Taper Length (ft)	100			100			100			100		
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1681	1720	1583	0	1796	1583
Flt Permitted	0.950			0.950			0.950	0.972			0.964	
Satd. Flow (perm)	1770	3539	1583	1770	3539	1583	1681	1720	1583	0	1796	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			149			268			208			208
Link Speed (mph)		45			45			25			45	
Link Distance (ft)		182			666			417			201	
Travel Time (s)		2.8			10.1			11.4			3.0	
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Shared Lane Traffic (%)							37%					
Lane Group Flow (vph)	233	652	149	87	545	167	55	55	102	0	207	208
Turn Type	Prot	NA	Perm	Prot	NA	Free	Split	NA	Perm	Split	NA	Perm
Protected Phases	5	2		1	6		3	3		4	4	
Permitted Phases			2			Free			3			4
Detector Phase	5	2	2	1	6		3	3	3	4	4	4
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	13.0	13.0	13.0	13.0	16.0		16.0	16.0	16.0	16.0	16.0	16.0
Total Split (s)	31.0	48.0	48.0	17.0	34.0		17.0	17.0	17.0	28.0	28.0	28.0
Total Split (%)	28.2%	43.6%	43.6%	15.5%	30.9%		15.5%	15.5%	15.5%	25.5%	25.5%	25.5%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0		-2.0	-2.0	-2.0		-2.0	-2.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0		4.0	4.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lead	Lead	Lag	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	C-Min	C-Min	None	C-Min		None	None	None	None	None	None
Act Effct Green (s)	21.4	54.5	54.5	11.9	42.5	110.0	10.7	10.7	10.7		19.4	19.4
Actuated g/C Ratio	0.19	0.50	0.50	0.11	0.39	1.00	0.10	0.10	0.10		0.18	0.18
v/c Ratio	0.68	0.37	0.17	0.45	0.40	0.11	0.34	0.33	0.30		0.66	0.46
Control Delay	50.8	20.3	4.0	53.4	27.9	0.1	51.3	51.0	2.2		51.7	8.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
Total Delay	50.8	20.3	4.0	53.4	27.9	0.1	51.3	51.0	2.2		51.7	8.6
LOS	D	С	Α	D	С	Α	D	D	Α		D	Α
Approach Delay		24.8			24.9			27.6			30.1	
Approach LOS		С			С			С			С	
Queue Length 50th (ft)	153	156	0	58	147	0	38	38	0		137	0
Queue Length 95th (ft)	212	214	34	104	218	0	76	76	0		195	52
Internal Link Dist (ft)		102			586			337			121	
Turn Bay Length (ft)				300		175			100			
Base Capacity (vph)	434	1752	859	213	1367	1583	198	203	370		391	508
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0		0	0
	<u> </u>				Ŭ							

1: Commercial Driveway /Lightfoot Road & U.S. 60

No-Build (2020) Conditions Timing Plan: AM Peak Hour

	۶	→	\rightarrow	•	•	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0		0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0		0	0
Reduced v/c Ratio	0.54	0.37	0.17	0.41	0.40	0.11	0.28	0.27	0.28		0.53	0.41

Intersection Summary

Area Type: Other

Cycle Length: 110

Actuated Cycle Length: 110

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 65

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.68 Intersection Signal Delay: 26.0 Intersection Capacity Utilization 50.4%

Intersection LOS: C ICU Level of Service A

Analysis Period (min) 15

Intersection							
Int Delay, s/veh	0.3						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	- 1	7		4	- ↑	7	
Traffic Vol, veh/h	7	9	5	359	348	12	
Future Vol, veh/h	7	9	5	359	348	12	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	0	-	-	-	50	
Veh in Median Storage	e, # 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	8	10	5	390	378	13	
Major/Minor	Minor2	ı	Major1	N	Major2		
Conflicting Flow All	778	378	391	0	riajoi z	0	
Stage 1	378	370	J71	-	-	-	
Stage 2	400	_	_	_	_	_	
Critical Hdwy	6.42	6.22	4.12	-	-	-	
Critical Hdwy Stg 1	5.42	0.22	4.12	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	-	
Follow-up Hdwy	3.518	3.318	2.218	-	-	-	
	365	669	1168	-	-	-	
Pot Cap-1 Maneuver	693	009	1100	-	-	-	
Stage 1		-	-	-	-	-	
Stage 2	677	-	-	-	-	-	
Platoon blocked, %	242	440	1140	-	-	-	
Mov Cap-1 Maneuver	363	669	1168	-	-	-	
Mov Cap-2 Maneuver	363	-	-	-	-	-	
Stage 1	690	-	-	-	-	-	
Stage 2	677	-	-	-	-	-	
Approach	EB		NB		SB		
HCM Control Delay, s	12.5		0.1		0		
HCM LOS	В						
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1 E	EBLn2	SBT	SBR
Capacity (veh/h)		1168	-	363	669	-	-
HCM Lane V/C Ratio		0.005		0.021		_	_
HCM Control Delay (s))	8.1	0	15.1	10.5	_	-
HCM Lane LOS	•	A	A	C	В	_	_
HCM 95th %tile Q(veh)	0	-	0.1	0	_	_
	,	3		5.1	J		

-						
Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL	↑ ↑	↑ ↑	7	JDL	7
Traffic Vol, veh/h	0	889	707	12	0	18
Future Vol, veh/h	0	889	707	12	0	18
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	otop -	None
Storage Length	_	-	_	0	-	0
Veh in Median Storage		0	0	-	0	-
Grade, %	-	0	0	_	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	966	768	13	0	20
IVIVIIIL FIOW	U	900	700	13	U	20
Major/Minor	Major1	N	Major2	N	Minor2	
Conflicting Flow All	-	0	-	0	-	384
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.32
Pot Cap-1 Maneuver	0	-	-	-	0	614
Stage 1	0	-	-	-	0	-
Stage 2	0	_	_	_	0	_
Platoon blocked, %		_	_	_		
Mov Cap-1 Maneuver	_	_	_	_	_	614
Mov Cap-2 Maneuver	_	_	_	_	_	-
Stage 1	_	_	_	_	_	_
Stage 2	_	_	_	_	-	_
Jugo 2						
Annroach	EB		WB		SB	
Approach						
HCM Control Delay, s	0		0		11.1	
HCM LOS					В	
Minor Lane/Major Mvn	nt	EBT	WBT	WBR S	SBLn1	
Capacity (veh/h)		_	_	_	614	
HCM Lane V/C Ratio		_	_	_	0.032	
HCM Control Delay (s)	_	_	_	11.1	
HCM Lane LOS	,	_	_	_	В	
HCM 95th %tile Q(veh	1)	_	_	_	0.1	
	,					

	•	→	•	•	+	•	•	†	~	/		4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	† †	7	ሻ	† †	7	ሻ	ની	7		ર્ન	7
Traffic Volume (vph)	228	828	176	144	865	233	172	41	151	260	51	339
Future Volume (vph)	228	828	176	144	865	233	172	41	151	260	51	339
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	300		175	0		100	0		0
Storage Lanes	1		1	1		1	1		1	0		1
Taper Length (ft)	100			100			100			100		
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1681	1717	1583	0	1788	1583
Flt Permitted	0.950			0.950			0.950	0.970			0.960	
Satd. Flow (perm)	1770	3539	1583	1770	3539	1583	1681	1717	1583	0	1788	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			189			208			162			300
Link Speed (mph)		45			45			25			45	
Link Distance (ft)		182			666			417			201	
Travel Time (s)		2.8			10.1			11.4			3.0	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Shared Lane Traffic (%)							39%					
Lane Group Flow (vph)	245	890	189	155	930	251	113	116	162	0	335	365
Turn Type	Prot	NA	Perm	Prot	NA	Free	Split	NA	Perm	Split	NA	Perm
Protected Phases	5	2		1	6		3	3		4	4	
Permitted Phases			2			Free			3			4
Detector Phase	5	2	2	1	6		3	3	3	4	4	4
Switch Phase	_	_	_		_			_				•
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	13.0	13.0	13.0	13.0	16.0		16.0	16.0	16.0	16.0	16.0	16.0
Total Split (s)	21.0	43.0	43.0	20.0	42.0		20.0	20.0	20.0	27.0	27.0	27.0
Total Split (%)	19.1%	39.1%	39.1%	18.2%	38.2%		18.2%	18.2%	18.2%	24.5%	24.5%	24.5%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0		-2.0	-2.0	-2.0		-2.0	-2.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0		4.0	4.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lead	Lead	Lag	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	C-Min	C-Min	None	C-Min		None	None	None	None	None	None
Act Effct Green (s)	17.5	41.7	41.7	14.8	39.0	110.0	13.8	13.8	13.8		23.7	23.7
Actuated g/C Ratio	0.16	0.38	0.38	0.13	0.35	1.00	0.13	0.13	0.13		0.22	0.22
v/c Ratio	0.87	0.66	0.26	0.65	0.74	0.16	0.54	0.54	0.48		0.87	0.63
Control Delay	75.3	32.1	4.6	58.5	35.9	0.2	54.2	54.1	11.6		65.4	13.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
Total Delay	75.3	32.1	4.6	58.5	35.9	0.2	54.2	54.1	11.6		65.4	13.8
LOS	E	C	А	E	D	A	D	D	В		E	В
Approach Delay	_	36.1		_	31.8			36.5			38.5	
Approach LOS		D			С			D			D	
Queue Length 50th (ft)	172	282	0	104	304	0	78	81	0		228	38
Queue Length 95th (ft)	#319	356	47	174	382	0	140	141	60		#396	138
Internal Link Dist (ft)	" 317	102	т,	1/7	586	J	1 10	337	00		121	100
Turn Bay Length (ft)		102		300	300	175		337	100		121	
Base Capacity (vph)	281	1340	717	257	1265	1583	244	249	368		388	579
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0		0	0
Clarration Sup Moductif	0	J	J	J	J	U	J	J	J		J	5

1: Commercial Driveway /Lightfoot Road & U.S. 60

No-Build (2020) Conditions Timing Plan: PM Peak Hour

	۶	→	\rightarrow	•	←	•	•	†	/	\	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0		0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0		0	0
Reduced v/c Ratio	0.87	0.66	0.26	0.60	0.74	0.16	0.46	0.47	0.44		0.86	0.63

Intersection Summary

Area Type: Other

Cycle Length: 110
Actuated Cycle Length: 110

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.87 Intersection Signal Delay: 35.1 Intersection Capacity Utilization 70.3%

Intersection LOS: D
ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Intersection							
Int Delay, s/veh	0.1						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	- ħ	7		4		7	
Traffic Vol, veh/h	4	3	1	501	647	18	
Future Vol, veh/h	4	3	1	501	647	18	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	0	-	-	-	50	
Veh in Median Storage	2, # 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	92	100	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	4	3	1	545	703	20	
Major/Minor I	Minor2	ı	Major1	N	Major2		
Conflicting Flow All	1250	703	723	0		0	
Stage 1	703	-	-	-	-	-	
Stage 2	547	_	_	_	-	_	
Critical Hdwy	6.42	6.22	4.12	_	-	_	
Critical Hdwy Stg 1	5.42	-	-	_	-	_	
Critical Hdwy Stg 2	5.42	_	_	_	-	_	
Follow-up Hdwy		3.318	2.218	_	-	_	
Pot Cap-1 Maneuver	191	438	879	_	-	_	
Stage 1	491	-	-	_	-	_	
Stage 2	580	_	_	_	_	_	
Platoon blocked, %	000			_	_	_	
Mov Cap-1 Maneuver	191	438	879	_	-	_	
Mov Cap-2 Maneuver	191	-	-	_	-	_	
Stage 1	490	_	_	_	_	_	
Stage 2	580	_	_	_	-	_	
otage 2	000						
Approach	EB		NB		SB		
HCM Control Delay, s	19.8		0		0		
HCM LOS	C		J		J		
	5						
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1 E	EBLn2	SBT	SBR
Capacity (veh/h)		879	-	191	438		-
HCM Lane V/C Ratio		0.001		0.023		_	_
HCM Control Delay (s)		9.1	0	24.3	13.3	_	_
HCM Lane LOS		7. I	A	24.3 C	13.3 B	_	_
HCM 95th %tile Q(veh))	0	-	0.1	0	_	_
	,	J		J. 1	J		

0.1						
EBL	EBT	WE	ВТ	WBR	SBL	SBR
IS					- J.D.L.	7
0				9	0	20
0				9	0	20
						0
						Stop
-					-	None
-			_		_	0
rage,# -	0)	0	-	0	-
-	_			_	0	-
92				92		92
						2
						22
U	1007	1-70	, ,	10	U	~~
			r2		/linor2	
-	0)	-	0	-	744
-	-		-	-	-	-
-	-		-	-	-	-
-	-	•	-	-	-	6.94
-	-		-	-	-	-
_	-		-	-	-	-
-	-		-	-	-	3.32
er 0	-		-	-	0	357
0	-		-	-	0	-
0	-	•	-	-	0	-
,)						
			-	-		
ver -	-	•	-	-	-	357
	-		- - -	-	-	357
ver - -	-		- - -	-		357 - -
	- - -			- - -	- - -	357 - -
	- - - -		-	-	- - -	357 - -
ver - - -	- - -		- - - -	- - - -	- - - -	357 - - -
ver - - - EB				- - - -	- - - - SB	357
ver - - -			- - - - - 0	- - - -	15.7	357
ver - - - EB				- - - -		357 - - -
ver - - - EB					15.7	357 - - -
ver - - - EB			0	WBRS	15.7 C	357
ver			0		15.7 C SBLn1	357
EB Vy, s 0			0	-	15.7 C SBLn1 357	357
ver y, s 0			0	-	15.7 C SBLn1 357 0.061	357
EB Vy, s 0			0	-	15.7 C SBLn1 357 0.061 15.7	357
ver y, s 0			0	-	15.7 C SBLn1 357 0.061	357
	EBL 0 0 0 Free - age, # - 92 2 0 Major1 0 0	EBL EBT 0 1232 0 1232 nr 0 0 Free Free - None age, # - 0 92 92 2 2 0 1339 Major1 - 0	EBL EBT WE 0 1232 136 0 1232 136 0 1232 136 nr 0 0 Free Free Free - None 0 92 92 92 2 2 0 1339 148 Major1 Majo - 0	EBL EBT WBT O 1232 1368 O 1232 1368 O 1232 1368 O 0 0 0 Free Free Free - None O 0 92 92 92 2 2 2 0 1339 1487 Major1 Major2 O	EBL EBT WBT WBR O 1232 1368 9 O 1232 1368 9 O 0 0 0 0 Free Free Free Free - None - None - O 0 0 - O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0	EBL EBT WBT WBR SBL 0 1232 1368 9 0 0 1232 1368 9 0 0 0 0 0 0 Free Free Free Free Stop - None - None - None - - None - None - O - 0 - O 0 - O - O - - O 0 - O - O - O 92 92 92 92 92 92 2 3 </td

		۶	→	•	•	←	•	1	†	~	\	_
Lane Group	EBU	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations		ă	† †	7	ሻ	† †	7	7	ની	7		र्स
Traffic Volume (vph)	45	195	535	128	75	478	144	78	20	88	176	47
Future Volume (vph)	45	195	535	128	75	478	144	78	20	88	176	47
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)		0		0	300		175	0		100	0	
Storage Lanes		1		1	1		1	1		1	0	
Taper Length (ft)		100			100			100			100	
Satd. Flow (prot)	0	1770	3539	1583	1770	3539	1583	1681	1718	1583	0	1792
Flt Permitted		0.950			0.950			0.950	0.971			0.962
Satd. Flow (perm)	0	1770	3539	1583	1770	3539	1583	1681	1718	1583	0	1792
Right Turn on Red				Yes			Yes			Yes		
Satd. Flow (RTOR)				149			268			208		
Link Speed (mph)			45			45			25			45
Link Distance (ft)			321			666			417			402
Travel Time (s)			4.9			10.1			11.4			6.1
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Shared Lane Traffic (%)								38%				
Lane Group Flow (vph)	0	279	622	149	87	556	167	56	58	102	0	260
Turn Type	Prot	Prot	NA	Perm	Prot	NA	Free	Split	NA	Perm	Split	NA
Protected Phases	5	5	2		1	6		3	3		4	4
Permitted Phases				2			Free			3		
Detector Phase	5	5	2	2	1	6		3	3	3	4	4
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	13.0	13.0	13.0	13.0	13.0	16.0		16.0	16.0	16.0	16.0	16.0
Total Split (s)	32.0	32.0	49.0	49.0	15.0	32.0		16.0	16.0	16.0	30.0	30.0
Total Split (%)	29.1%	29.1%	44.5%	44.5%	13.6%	29.1%		14.5%	14.5%	14.5%	27.3%	27.3%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		-2.0	-2.0	-2.0	-2.0	-2.0		-2.0	-2.0	-2.0		-2.0
Total Lost Time (s)		4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0		4.0
Lead/Lag	Lead	Lead	Lag	Lag	Lead	Lag		Lead	Lead	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	C-Min	C-Min	None	C-Min		None	None	None	None	None
Act Effct Green (s)		23.7	52.9	52.9	10.9	37.6	110.0	10.5	10.5	10.5		22.2
Actuated g/C Ratio		0.22	0.48	0.48	0.10	0.34	1.00	0.10	0.10	0.10		0.20
v/c Ratio		0.73	0.37	0.18	0.50	0.46	0.11	0.35	0.36	0.30		0.72
Control Delay		51.7	20.7	3.9	57.1	32.0	0.1	52.2	52.3	2.3		52.2
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0
Total Delay		51.7	20.7	3.9	57.1	32.0	0.1	52.2	52.3	2.3		52.2
LOS		D	С	Α	Ε	С	Α	D	D	Α		D
Approach Delay			26.6			28.1			28.7			32.4
Approach LOS			С			С			С			С
Queue Length 50th (ft)		183	156	0	58	165	0	38	41	0		171
Queue Length 95th (ft)		251	201	34	107	229	0	77	81	0		239
Internal Link Dist (ft)			241			586			337			322
Turn Bay Length (ft)					300		175			100		
Base Capacity (vph)		450	1703	839	183	1210	1583	183	187	358		423
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0		0
		•	ŭ	•	ŭ	•	•	•	•	ŭ		•

	4
Lana Craun	CDD
Lane Group	SBR *
Land Configurations	r 179
Traffic Volume (vph)	179 179
Future Volume (vph)	
Ideal Flow (vphpl)	1900
Storage Length (ft)	225
Storage Lanes	1
Taper Length (ft) Satd. Flow (prot)	1583
Flt Permitted	1003
Satd. Flow (perm)	1583
Right Turn on Red	Yes
Satd. Flow (RTOR)	208
Link Speed (mph)	208
Link Speed (mpn) Link Distance (ft)	
Travel Time (s)	
Peak Hour Factor	0.86
Shared Lane Traffic (%)	0.00
Lane Group Flow (vph)	208
Turn Type	Perm
Protected Phases	r Cilil
Permitted Phases	4
Detector Phase	4
Switch Phase	4
Minimum Initial (s)	5.0
Minimum Split (s)	16.0
Total Split (s)	30.0
Total Split (%)	27.3%
Yellow Time (s)	4.0
All-Red Time (s)	2.0
Lost Time Adjust (s)	-2.0
Total Lost Time (s)	4.0
Lead/Lag	Lag
Lead-Lag Optimize?	Yes
Recall Mode	None
Act Effct Green (s)	22.2
Actuated g/C Ratio	0.20
v/c Ratio	0.43
Control Delay	7.7
Queue Delay	0.0
Total Delay	7.7
LOS	А
Approach Delay	
Approach LOS	
Queue Length 50th (ft)	0
Queue Length 95th (ft)	51
Internal Link Dist (ft)	
Turn Bay Length (ft)	225
Base Capacity (vph)	533
Starvation Cap Reductn	0

1: Commercial Driveway /Lightfoot Road & U.S. 60

Build (2020) Conditions Timing Plan: AM Peak Hour

		ၨ	-	•	•	←	•	•	†	~	>	ţ
Lane Group	EBU	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0		0
Storage Cap Reductn		0	0	0	0	0	0	0	0	0		0
Reduced v/c Ratio		0.62	0.37	0.18	0.48	0.46	0.11	0.31	0.31	0.28		0.61

Intersection Summary

Area Type: Other

Cycle Length: 110
Actuated Cycle Length: 110

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 65

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.73 Intersection Signal Delay: 28.3 Intersection Capacity Utilization 55.4%

Intersection LOS: C
ICU Level of Service B

Analysis Period (min) 15

	4
Lane Group	SBR
Spillback Cap Reductn	0
Storage Cap Reductn	0
Reduced v/c Ratio	0.39
Intersection Summary	

Intersection						
Int Delay, s/veh	1.5					
•		ED.5	ND	NET	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	<u>ነ</u>	7	•	†	4	4.
Traffic Vol, veh/h	16	86	0	359	348	16
Future Vol, veh/h	16	86	0	359	348	16
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	0	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	17	93	0	390	378	17
N.A. ' /N.A'					4 . 0	
	Minor2		Najor1		Major2	
Conflicting Flow All	777	387	-	0	-	0
Stage 1	387	-	-	-	-	-
Stage 2	390	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	-	-
Pot Cap-1 Maneuver	365	661	0	_	_	_
Stage 1	686	_	0	_	_	_
Stage 2	684	_	0	_	_	_
Platoon blocked, %	001		O	_	_	_
Mov Cap-1 Maneuver	365	661				
	365	001	-	-	-	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	686	-	-	-	-	-
Stage 2	684	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s			0		0	
HCM LOS	В		0		J	
HOW LOO	U					
Minor Lane/Major Mvn	nt	NBT E	EBLn1	EBLn2	SBT	SBR
Capacity (veh/h)		-	365	661	-	-
HCM Lane V/C Ratio		_	0.048		-	-
HCM Control Delay (s))	_	15.4	11.3	-	_
HCM Lane LOS	′	_	C	В	_	_
HCM 95th %tile Q(veh	1)	_	0.1	0.5	_	_
115W 70W 70W Q(VOI	'/		J. 1	0.0		

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL	↑ ↑	↑ ↑	7	JDL	JDIK **
Traffic Vol, veh/h	0	903	659	153	0	67
Future Vol, veh/h	0	903	659	153	0	67
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	- -	None
Storage Length	_	-	_	0	_	0
Veh in Median Storag	e.# -	0	0	-	0	-
Grade, %	-	0	0	_	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	982	716	166	0	73
IVIVIIIL FIOW	U	902	710	100	U	13
Major/Minor	Major1	N	Major2	N	∕linor2	
Conflicting Flow All	-	0	-	0	-	358
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	_	_	_	-	-	_
Follow-up Hdwy	_	_	_	_	_	3.32
Pot Cap-1 Maneuver	0	_	_	_	0	638
Stage 1	0	_	_	_	0	-
Stage 2	0	_	_	_	0	_
Platoon blocked, %	· ·	_	_	_	ŭ	
Mov Cap-1 Maneuver	_	_	_	_	_	638
Mov Cap 1 Maneuver		_	_	_	_	-
Stage 1	_	_	_	_	_	_
Stage 2	-	_		_	_	_
Jiaye Z	-	=	-	-	-	-
			14.5		65	
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		11.4	
HCM LOS					В	
Minor Lane/Major Mvr	nt	EBT	WRT	WBR S	SBI n1	
Capacity (veh/h)		בטו	V V D I	ייוטויי	638	
HCM Lane V/C Ratio		-	-	-	0.114	
HCM Control Delay (s	`	-	-	-	11.4	
HCM Lane LOS)	-	-	-	11.4 B	
HCM 95th %tile Q(ver	.)	-	-	-	0.4	
TION FOUT WITH U(VEI	リ	-	-	-	0.4	

		۶	→	•	•	+	•	1	†	~	\	_
Lane Group	EBU	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations		Ä	† †	7	ሻ	† †	7	ሻ	ની	7		र्स
Traffic Volume (vph)	37	227	805	176	144	874	233	174	41	151	299	53
Future Volume (vph)	37	227	805	176	144	874	233	174	41	151	299	53
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)		325		0	300		175	0		100	0	
Storage Lanes		1		1	1		1	1		1	0	
Taper Length (ft)		100			100			100			100	
Satd. Flow (prot)	0	1770	3539	1583	1770	3539	1583	1681	1717	1583	0	1786
Flt Permitted		0.950			0.950			0.950	0.970			0.959
Satd. Flow (perm)	0	1770	3539	1583	1770	3539	1583	1681	1717	1583	0	1786
Right Turn on Red				Yes			Yes			Yes		
Satd. Flow (RTOR)				189			208			162		
Link Speed (mph)			45			45			25			45
Link Distance (ft)			321			666			417			407
Travel Time (s)			4.9			10.1			11.4			6.2
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Shared Lane Traffic (%)								39%				
Lane Group Flow (vph)	0	284	866	189	155	940	251	114	117	162	0	379
Turn Type	Prot	Prot	NA	Perm	Prot	NA	Free	Split	NA	Perm	Split	NA
Protected Phases	5	5	2	_	1	6	_	3	3		4	4
Permitted Phases	_	_		2 2			Free	_		3		
Detector Phase	5	5	2	2	1	6		3	3	3	4	4
Switch Phase	. .										- 0	
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	13.0	13.0	13.0	13.0	13.0	16.0		16.0	16.0	16.0	16.0	16.0
Total Split (s)	27.0	27.0	42.0	42.0	21.0	36.0		20.0	20.0	20.0	27.0	27.0
Total Split (%)	24.5%	24.5%	38.2%	38.2%	19.1%	32.7%		18.2%	18.2%	18.2%	24.5%	24.5%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		-2.0	-2.0	-2.0	-2.0	-2.0		-2.0	-2.0	-2.0		-2.0
Total Lost Time (s)	Lood	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	امما	4.0
Lead/Lag	Lead	Lead	Lag	Lag	Lead	Lag		Lead	Lead	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	C-Min	C-Min	None	C-Min	110.0	None	None	None	None	None
Act Effet Green (s)		21.8	39.6	39.6	15.3	33.1 0.30	110.0 1.00	13.9 0.13	13.9	13.9 0.13		25.2
Actuated g/C Ratio		0.20 0.81	0.36 0.68	0.36 0.27	0.14 0.63	0.30		0.13	0.13 0.54	0.13		0.23 0.93
v/c Ratio Control Delay		60.6	33.5	4.7	56.2	48.0	0.16 0.2	54.4	54.3	11.6		72.7
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0		0.0
Total Delay		60.6	33.5	4.7	56.2	48.0	0.0	54.4	54.3	11.6		72.7
LOS		60.6 E	33.3 C	4.7 A	50.2 E	40.0 D	0.2 A	54.4 D	54.5 D	11.0 B		72.7 E
Approach Delay		L	35.2	А	L	40.0	A	D	36.7	Ь		45.1
Approach LOS			55.2 D			40.0 D			30.7 D			43.1 D
Queue Length 50th (ft)		190	275	0	103	337	0	80	82	0		266
Queue Length 95th (ft)		#315	350	47	172	#458	0	140	143	60		#470
Internal Link Dist (ft)		# J I J	241	7/	1/2	#436 586	U	140	337	00		327
Turn Bay Length (ft)		325	Z# I		300	500	175		JJ 1	100		JZI
Base Capacity (vph)		370	1273	690	273	1066	1583	244	249	368		409
Starvation Cap Reductn		0	0	0	0	0	0	0	0	0		407
		U	U	U	U	U	U	U	U	U		U

Lane Group Lane Configurations	SBR
Land Configurations	JUIN
	7
Traffic Valuma (vah)	339
Traffic Volume (vph) Future Volume (vph)	339
Ideal Flow (vphpl)	339 1900
Storage Length (ft)	225
Storage Lanes	1
Taper Length (ft)	'
Satd. Flow (prot)	1583
Flt Permitted	1303
Satd. Flow (perm)	1583
Right Turn on Red	Yes
Satd. Flow (RTOR)	272
Link Speed (mph)	212
Link Speed (mpn) Link Distance (ft)	
Travel Time (s)	
Peak Hour Factor	0.93
Shared Lane Traffic (%)	0.93
	365
Lane Group Flow (vph)	
Turn Type Protected Phases	Perm
Permitted Phases	Л
Detector Phases	4 4
	4
Switch Phase	ГО
Minimum Initial (s)	5.0
Minimum Split (s)	16.0 27.0
Total Split (s)	27.0 24.5%
Total Split (%)	
Yellow Time (s)	4.0
All-Red Time (s)	2.0
Lost Time Adjust (s)	-2.0
Total Lost Time (s)	4.0
Lead/Lag	Lag
Lead-Lag Optimize? Recall Mode	Yes
	None
Act Effet Green (s)	25.2 0.23
Actuated g/C Ratio	
v/c Ratio	0.64 16.4
Control Delay	0.0
Queue Delay	16.4
Total Delay LOS	
	В
Approach LOS	
Approach LOS	ЕЕ
Queue Length 50th (ft)	55 142
Queue Length 95th (ft)	163
Internal Link Dist (ft)	225
Turn Bay Length (ft)	225 572
Base Capacity (vph)	
Starvation Cap Reductn	0

1: Commercial Driveway /Lightfoot Road & U.S. 60

Build (2020) Conditions Timing Plan: PM Peak Hour

		۶	→	•	•	-	•	4	†	<i>></i>	>	ţ
Lane Group	EBU	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Spillback Cap Reductn		0	0	0	0	0	0	0	0	0		0
Storage Cap Reductn		0	0	0	0	0	0	0	0	0		0
Reduced v/c Ratio		0.77	0.68	0.27	0.57	0.88	0.16	0.47	0.47	0.44		0.93

Intersection Summary

Area Type: Other

Cycle Length: 110
Actuated Cycle Length: 110

Offset: 97 (88%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.93 Intersection Signal Delay: 39.0 Intersection Capacity Utilization 79.0%

Intersection LOS: D
ICU Level of Service D

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	4
Lane Group	SBR
Spillback Cap Reductn	0
Storage Cap Reductn	0
Reduced v/c Ratio	0.64
Intersection Summary	

Intersection						
Int Delay, s/veh	1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	T T	T T	NDL		<u>301</u>	אוטכ
Traffic Vol, veh/h	12	67	0	T 501	647	12
Future Vol, veh/h	12	67	0	501	647	12
Conflicting Peds, #/hr	0	0	0	0	047	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Stop	None	riee -	None	riee -	None
		None 0			-	None
Storage Length	0 # 0		-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	100	-	0	0	-
Peak Hour Factor	92	100	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	13	67	0	545	703	13
Major/Minor	Minor2	N	Major1	N	Major2	
Conflicting Flow All	1255	710	-	0	-	0
Stage 1	710	-	_	-	_	-
Stage 2	545	-	_	_	_	_
Critical Hdwy	6.42	6.22	_	_	_	_
Critical Hdwy Stg 1	5.42	- 0.22	_	_	_	_
Critical Hdwy Stg 2	5.42	_		_	-	_
Follow-up Hdwy	3.518		-	_	_	_
Pot Cap-1 Maneuver	189	434	0	_	-	_
Stage 1	487	-	0	_	-	_
Stage 2	581	-	0	_		_
Platoon blocked, %	J0 I	-	U	-	-	-
Mov Cap-1 Maneuver	189	434		-	-	-
Mov Cap-1 Maneuver	189	434	-	-	-	-
•		-	-	-	-	-
Stage 1	487	-	-	-	-	-
Stage 2	581	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	16.5		0		0	
HCM LOS	С					
NA!		NOT.	- DI 4	EDI 0	CDT	CDD
Minor Lane/Major Mvn	nτ	MRII	EBLn1		SBT	SBR
Capacity (veh/h)		-	189	434	-	-
HCM Lane V/C Ratio		-	0.069		-	-
HCM Control Delay (s))	-	25.5	14.8	-	-
HCM Lane LOS		-	D	В	-	-
HCM 95th %tile Q(veh	1)	-	0.2	0.5	-	-

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		^	^	7		7
Traffic Vol, veh/h	0	1245	1321	126	0	59
Future Vol, veh/h	0	1245	1321	126	0	59
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	0	-	0
Veh in Median Storage	e,# -	0	0	_	0	-
Grade, %	-	0	0	_	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	1353	1436	137	0	64
WWW.C 10W	O	1000	1 100	107	O	01
n.a. : /n.a:			4 . 0		4 ' 0	
	Major1		Major2		/linor2	740
Conflicting Flow All	-	0	-	0	-	718
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.32
Pot Cap-1 Maneuver	0	-	-	-	0	371
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	-	-	-	-	-	371
Mov Cap-2 Maneuver	-	-	_	_	-	_
Stage 1	_	_	_	_	_	_
Stage 2	_	_	_	_	_	_
Jugo 2						
Annroach	EB		WB		SB	
Approach	0		0		16.7	
HCM LOS	U		U		16.7 C	
HCM LOS					C	
Minor Lane/Major Mvn	nt	EBT	WBT	WBR S		
Capacity (veh/h)		-	-	-	371	
HCM Lane V/C Ratio		-	-	-	0.173	
HCM Control Delay (s))	-	-	-	16.7	
HCM Lane LOS		-	-	-	С	
HCM 95th %tile Q(veh)	-	-	-	0.6	